
A Demonstration of GPTuner:

A GPT-Based Manual-Reading Database Tuning System

Jiale Lao
∗

Sichuan University

Chengdu, China

solidlao.jiale@gmail.com

Yibo Wang
∗

Sichuan University

Chengdu, China

wangyibo.cs@gmail.com

Yufei Li
∗

Sichuan University

Chengdu, China

liyufeievangeline@gmail.com

Jianping Wang

Northwest Normal University

Lanzhou, China

2022222119@nwnu.edu.cn

Yunjia Zhang

University of Wisconsin-Madison

Madison, Wisconsin, USA

yunjia@cs.wisc.edu

Zhiyuan Cheng

Purdue University

West Lafayette, Indiana, USA

cheng443@purdue.edu

Wanghu Chen

Northwest Normal University

Lanzhou, China

chenwh@nwnu.edu.cn

Yuanchun Zhou

Computer Network Information

Center, Chinese Academy of Sciences

Beijing, China

zyc@cnic.cn

Mingjie Tang
†

Sichuan University

Chengdu, China

tangrock@gmail.com

Jianguo Wang

Purdue University

West Lafayette, Indiana, USA

csjgwang@purdue.edu

ABSTRACT

CCS CONCEPTS

• Information systems→ Database administration.

KEYWORDS

Database Tuning, Large Language Model, Bayesian Optimization

ACM Reference Format:

Jiale Lao, YiboWang, Yufei Li, JianpingWang, Yunjia Zhang, Zhiyuan Cheng,

Wanghu Chen, Yuanchun Zhou, Mingjie Tang, and Jianguo Wang. 2024.

A Demonstration of GPTuner: A GPT-Based Manual-Reading Database

Tuning System. In Companion of the 2024 International Conference on Man-
agement of Data (SIGMOD-Companion ’24), June 9–15, 2024, Santiago, Chile.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3626246.3654739

1 INTRODUCTION

Tuning configurable parameters (i.e., knobs) of modern Database

Management Systems (DBMS) is crucial to improve performance.

Since it is challenging to manage hundreds of knobs under diverse

∗
The authors contributed equally to this paper.

†
The corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0421-5/24/06

https://doi.org/10.1145/3626246.3654739

database instances and query workloads in the changing cloud

environment, state-of-the-art methods turn to machine learning

(ML) techniques to automate the tuning process. However, they

either still incur significant tuning costs because they only rely on

the runtime feedback of benchmark evaluations [6, 7], which is

inefficient when the search space is high-dimensional (e.g., DBMS

expose hundreds of knobs) and heterogeneous (e.g., a knob can be

in continuous or categorical values), or they only yield sub-optimal

performance since they utilize domain knowledge in a limited way

(e.g., only consider suggested values of knobs from manuals) [4, 5].

Unlike ML-based tuning methods that tune DBMS based on per-

formance statistics, human database administrators (DBAs) lever-

age domain knowledge instead, including which knobs are worth

tuning under certain scenarios
1
, and which values to be considered

given the unique semantics of a knob
2
. While it is widely acknowl-

edged that such knowledge is invaluable in guiding the tuning

process, such wisdom seems exclusive to humans and inaccessible

to machines due to the barriers in natural language understanding.

Recently, the advent of LLMmakes it possible to leverage natural

language knowledge. However, even equipped with the powerful

LLM, it is still non-trivial to bridge the gap between black-box

optimization and white-box domain knowledge, mainly due to

three challenges: C1. Lengthy and complex data pipeline. Domain

knowledge typically comes in the form of DBMS documents and

discussions from web forums, which could be heterogeneous in for-

mat and noisy in contents. To leverage such knowledge, it involves

a complex and lengthy data pipeline: data ingestion, data cleaning,

1
For example, for an IO-intensive OLTP workload, it is recommended to adjust knob

“effective_io_concurrency” from PostgreSQL.

2
For instance, we should set “random_page_cost” to 1.x if we are using SSD disks.

https://orcid.org/0009-0003-1144-5152
https://orcid.org/0009-0005-1971-3398
https://orcid.org/0009-0004-4285-5696
https://orcid.org/0009-0001-1893-4245
https://orcid.org/0009-0001-7157-156X
https://orcid.org/0000-0001-7280-6079
https://orcid.org/0000-0002-9233-7609
https://orcid.org/0000-0003-2144-1131
https://orcid.org/0000-0002-8893-4574
https://orcid.org/0000-0002-3039-1175
https://doi.org/10.1145/3626246.3654739
https://doi.org/10.1145/3626246.3654739

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile. Jiale Lao et al.

data integration and data extraction. C2. The brittle nature of LLM. It
is challenging to utilize LLM to solve complex and domain-specific

tasks, because small modifications to the prompt can cause large

variations in the model outputs, and the inevitable hallucination

problem of LLM (i.e., LLM can generate answers that seem correct

but are factually false). C3. Lack of a knowledge-aware optimization
framework. The inherent design of optimization algorithms like

Bayesian Optimization (BO) and Reinforcement Learning (RL) does

not support the integration of external domain knowledge directly,

necessitating extensive modifications to their standard workflows.

Our recent work GPTuner [3], which is accepted by VLDB 2024,

addresses these challenges using an LLM-enhanced BO approach.

For C1 and C2, we develop a LLM-based pipeline with two error cor-

rection mechanisms to collect and refine heterogeneous knowledge,

and propose a prompt ensemble algorithm to unify a structured

view of the refined knowledge. For C3, using the structured knowl-

edge, we design a workload-aware and training-free knob selection

strategy, develop a search space optimization technique consider-

ing the value range of each knob, and propose a Coarse-to-Fine

Bayesian Optimization Framework to explore the optimized space.

This demo lets conference attendees experience GPTuner in

actions. After specifying the target DBMS, the optimization metric

and the customized workload, visitors can (1) invoke an LLM to

help identify which knobs are worth tuning and only tune these

knobs, (2) interact with an LLM-based pipeline to see how multi-

source heterogeneous knowledge with noise is transformed into

a unified structured view, (3) visualize the process of using the

structured knowledge to optimize the value range of each knob,

(4) execute the BO to explore the optimized space, and finally (5)

visualize the optimization process and export the satisfied knob

configuration in SQL format such that it can be deployed directly.

Our implementation and a video are available at https://github.com/

SolidLao/GPTuner and https://youtu.be/Hz5Zck-9TlA, respectively.

2 SYSTEM OVERVIEW

Workflow. Figure 1 depicts the tuning pipeline of GPTuner. ❶ User

provides the DBMS to be tuned (PostgreSQL or MySQL), the target

workload (TPC-C, TPC-H or a customized workload), and the op-

timization objective (latency or throughput). ❷ GPTuner collects

and refines the heterogeneous knowledge from different sources

(GPT-4, DBMS manuals and web forums) to construct Tuning Lake,
a collection of DBMS tuning knowledge. ❸ GPTuner unifies the

refined tuning knowledge from Tuning Lake into a structured view

accessible to machines (e.g., JSON). ❹ GPTuner reduces the search

space dimensionality by selecting important knobs to tune (i.e.,

fewer knobs to tune means fewer dimensions). ❺ GPTuner opti-

mizes the value range of each knob based on structured knowledge.

❻ GPTuner explores the optimized space via a novel Coarse-to-

Fine Bayesian Optimization framework, and finally ❼ identifies

satisfactory knob configurations within resource limits (e.g., the

maximum optimization time or iterations specified by users).

Components. We briefly discuss the three components of GPTuner

in the following sections. For more technical details and experimen-

tal results, please refer to our research paper [3].

3 KNOWLEDGE HANDLER

3.1 Knowledge Preparation

In this part, Knowledge Handler aims to prepare a reliable natural

language knowledge base. It leverages LLM to (1) prepare multi-

source knowledge from GPT-4, DBMS manuals and web forums, (2)

filter out noisy contents by comparing the knowledgewith its DBMS

system view (e.g., pg_settings from PostgreSQL), (3) summarize the

multi-source knowledge by handling the possible conflict between

the remaining knowledge in a priority way (i.e., manuals have the

highest priority while GPT-4 has the lowest due to its hallucination

problem), and (4) check and revise the summarization to make sure

it is factual consistent with the source contents.

3.2 Knowledge Transformation

In the knowledge transformation stage, Knowledge Handler intends
to transform the refined knowledge into a structured view accessible

to machines (e.g., JSON). In the context of DBMS knob tuning,

we primarily consider four types of attributes: suggested_values,
min_value, max_value and special_value, whose roles are discussed
in Section 4.2. Next, we use LLM to extract the values of the four

attributes from the knowledge. To address the effect of the brittle

nature of LLM as much as possible, we propose a Prompt Ensemble
Algorithm since it is useful to acquire a more reliable result by

aggregating multiple imperfect but effective results. Specifically,

we prepare different prompts by sampling distinct examples for

each prompt to utilize the in-context learning of LLM, and aggregate

the results generated by each prompt with a Majority Vote strategy.

4 SEARCH SPACE OPTIMIZER

4.1 Dimensionality Optimization

In this part, Search Space Optimizer prunes space dimensionality

by identifying knobs that have a significant impact on the DBMS

performance, and only tunes these important knobs. Specifically, it

utilizes LLM to simulate DBA’s empirical judgement in real-world

scenarios and select knobs by considering the following four factors:

(1) DBMS Product. After years of tuning practice, it is empirically

known which knobs are important for a certain DBMS product.

Since such wisdom is included in the corpus of GPT-4, we can ex-

tract it by prompting GPT-4 to recommend knobs based on the

DBMS product. (2) Workload Characteristics. Different workloads
have distinct requirements on DBMS resources, which are regu-

lated by knobs. For example, given an I/O-intensive OLTPworkload,

DBAs would consider tuning disk-related knobs. (3) Query Bottle-
neck. Given LLM’s powerful analysis ability, LLM is capable of

delving into the execution plans of queries, and choosing knobs

related to the performance bottleneck. (4) Knob Dependency. Some

knobs need to be tuned at the same time to take effect, and LLM

can capture such dependency by reading DBMS manuals.

4.2 Range Optimization

In this part, Search Space Optimizer utilizes the structured knowl-

edge in Section 3.2 to optimize the value range of each knob.

Region Discard. For numerical knobs, Search Space Optimizer
limits the value scope of a knob betweenmin_value andmax_value.
DBAs summarized such values in manuals, and we extract them

to discard meaningless value regions, including values that are

https://github.com/SolidLao/GPTuner
https://github.com/SolidLao/GPTuner
https://youtu.be/Hz5Zck-9TlA

A Demonstration of GPTuner:

A GPT-Based Manual-Reading Database Tuning System SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile.

Client

Knowledge-Based
Config Recommender

 Bayesian Optimization

Target
Workload

 DBMS

 User Request

GPT-4
Manual
Web

GPTUNER

Tuning Lake
Knob：tmp_table_size

{ } knob_name.json

{
 "suggested_values": ...,
 "min_value": ...,
 "max_value": ...,
 "special value":....
}

knob suggested_values.g.t. min s.g.t. maxspecial_value

random_page_cost 1.21.0 2.0null

 Knowledge
 Structuralization

 []64 KB 16 MB-1wal_buffers
max_connections []48 120null

shared_buffers 27.5 GB27.5 GB 44 GBnull

Structured Knowledge
Knowledge Handler

 Knob
Configuration

 Optimization
Objective

Knob: shared_buffers

------- ------- -------
DESCRIPTION
PARAMETER INFO

“shared_buffers” can be
25% of the RAM but no
more than 40%

Knob: binlog_cache_size

 Knowledge Preparation

Knowledge-Based Search Space Optimizer

Dimensionality Optimization

work_mem

huge_pages

wal_buffers

4

work_mem

jit ×

huge_pages

wal_buffers

trace_sort ×

1

2
v

3

6

Coarse StageFine Stage

System Output7

1/21/4

control_knob
special_knob normal_knob

d.f.t. min d.f.t. max
Region
discard

Tiny
feasible
space

Virtual
knob
extension

Range Optimization5

* “s.g.t.” means “suggested” and “d.f.t.” means “default”

s.g.t. min s.g.t. max

s.g.t. mind.f.t. min d.f.t. maxs.g.t. max

d.f.t. min s.g.t. max d.f.t. maxs.g.t. min

Figure 1: System Overview of GPTuner

unlikely to result in promising performance, that could seize too

many system resources, and that could even make the DBMS crash.

Tiny Feasible Space. Search Space Optimizer uses suggested_values
to define a reliable discrete space. Such values are valuable since

they performedwell in the past and can serve as good starting points

for the new scenario. However, theymay not be suitable for all cases,

as the optimal knob setting depends on the specific environment,

which is diverse. Instead of relying on these static values only, we

dynamically apply a set of multiplicators on each suggested value.

We conduct above deviation process for all numerical knobs, and

the resulting discrete space is our Tiny Feasible Space, where Tiny
means the possible number of values is significantly reduced, and

Feasible indicates the chosen values are promising.

Virtual Knob Extension. In modern DBMS, there are knobs using

special values to do something different from what the knobs nor-

mally do. However, optimizers may never trial these values (even

though it could be the optimal) since the likelihood of sampling

them is extremely low [2]. Therefore, we provide separate boolean

virtual knobs to control each knob with special values. Specifically,

the virtual knobs are exposed to optimizers to determine whether

the “normal value range” or “special value” is activated.

5 CONFIGURATION RECOMMENDER

Configuration Recommender utilizes a novel Coarse-to-Fine BO

Framework to explore the search space under the guidance of do-

main knowledge, and recommends well-performing configurations.

In the first stage, BO only explores a discrete subspace of the whole

heterogeneous space (the Tiny Feasible Space defined in Section

4.2). This subspace is small in size but promising to contain good

configurations since we generate it based on the reliable domain

knowledge. In the next stage, to avoid the overlooking problem

of coarse-grained search (it is inevitable to lose some useful con-

figurations for any space reduction technique), BO explores the

heterogeneous space thoroughly with the other two optimizations

in Section 4.2. Moreover, we use the samples from the first stage to

bootstrap the surrogate model of BO in the second stage. After the

two stages, the recommender outputs the best-performing knob

configurations found within the budget limits specified by users.

6 DEMONSTRATION SCENARIOS

This section demonstrates how visitors interact with GPTuner to

tune their DBMS in two scenarios. Visitors have the opportunity to

invoke GPT models. However, since this takes time and money, we

provide intermediate results in advance for better interactivity.

Database Administrators (DBAs). Let us now walk through a

typical scenario where a DBA aims to optimize a frequently running

workload in the company. She first provides basic information

of the target DBMS in and OpenAI API key can be optionally

offered for model invocation. Then she uploads the workload in

and describes the characteristics of the workload for better knob

selection. Clicking the button in , GPTuner identifies important

knobs and DBA can check and modify the selection, and the final

selection will be displayed in . When she selects one of the knobs,

the page updates to present the knowledge process pipeline for that

knob. She can use knowledge from multiple sources, and provide

her unique tuning insight as “Additional Suggestion”. Clicking the

button in , GPTuner filters noisy knowledge contradicting the

system view in , and the remaining consistent knowledge will be

summarized in . Next, GPTuner extracts the values of attributes

from the summary, and generates the structured knowledge in .

At the same time, the optimized search spaces of the two stages

are calculated and visualized in . Finally, when she clicks “Start

Tuning” in , GPTuner executes BO to explore the search spaces

from coarse granularity to fine granularity. The tuning process is

visualized and the best performance is reported in real time. All

configurations are presented in , and she can export the satisfied

configuration in SQL format and deploy it on her DBMS directly.Regular Engineers. Let us now walk through the second scenario

where a regular engineer wants to try out GPTuner for automatic

DBMS optimization. In , she can choose TPC-C or TPC-H as the

target workload, which are supported by Benchbase [1]. She can just

leave knob selection default and learn about the tuning knowledge

of each knob in and . She can see how important attributes

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile. Jiale Lao et al.

A

B

C

D

G

F

I

H

E

Figure 2: GPTuner Demonstration

alter system set default_statistics_target to '150' ;;
alter system set work_mem to '4096' ;
alter system set effective_io_concurrency to '600' ;
. . .

config.sql

J K

Figure 3: GPTuner Result Page

can be extracted from to obtain the structured knowledge in ,

and see how efficiently GPTuner can reduce the search space in ,

where the blue line denotes the default search space provided by

DBMS vendors, the red line and blue dots denote the search spaces

of our two-stage BO algorithm. Finally, by clicking “Start Tuning”

in , her target DBMS is optimized by GPTuner automatically.

ACKNOWLEDGEMENTS

Jianguo Wang acknowledges the support of the National Science

Foundation under Grant Number 2337806.

REFERENCES

[1] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-Mauroux.

2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational Databases.

PVLDB 7 (2013), 277–288.

[2] Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Müller, Carlo Curino, and

Shivaram Venkataraman. 2022. LlamaTune: Sample-Efficient DBMS Configuration

Tuning. Proc. VLDB Endow. 15 (2022), 2953–2965.
[3] Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia Zhang, Zhiyuan Cheng,

Wanghu Chen, Mingjie Tang, and Jianguo Wang. 2023. GPTuner: A Manual-

Reading Database Tuning System via GPT-Guided Bayesian Optimization.

arXiv:2311.03157 [cs.DB]

[4] Immanuel Trummer. 2021. The Case for NLP-Enhanced Database Tuning: Towards

Tuning Tools That "Read the Manual". Proc. VLDB Endow. 14, 7 (2021), 1159–1165.
[5] Immanuel Trummer. 2022. DB-BERT: A Database Tuning Tool That "Reads the

Manual" (SIGMOD ’22). Association for Computing Machinery, 190–203.

[6] Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao,

Siyuan Sheng, Andrew Pavlo, and Geoffrey J. Gordon. 2018. A Demonstration

of the Ottertune Automatic Database Management System Tuning Service. Proc.
VLDB Endow. 11 (2018), 1910–1913.

[7] Xinyi Zhang, Zhuo Chang, Yang Li, HongWu, Jian Tan, Feifei Li, and Bin Cui. 2022.

Facilitating Database Tuning with Hyper-Parameter Optimization: A Comprehen-

sive Experimental Evaluation. Proc. VLDB Endow. 15 (may 2022), 1808–1821.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2337806
https://arxiv.org/abs/2311.03157

	Abstract
	1 Introduction
	2 System Overview
	3 Knowledge Handler
	3.1 Knowledge Preparation
	3.2 Knowledge Transformation

	4 Search Space Optimizer
	4.1 Dimensionality Optimization
	4.2 Range Optimization

	5 Configuration Recommender
	6 Demonstration Scenarios
	References

